DÉGLACIATION DES VALLÉES GLACIAIRES ALSACIENNES DES HAUTES VOSGES CENTRALES : YD, LIA, ELA

MERCIER Jean-Luc*

Introduction

"Our data appear to quantitatively confirm the presence of permanent ice and glaciers at low altitude (i.e. 600 m) in Vosgian valleys at the beginning of the Holocene" [Mercier et al. (1)]. Dans une ambiance européenne dominée par le modèle glaciaire alpin, cette phrase mérite d’être explicitée.

Dans les Alpes suisses et autrichiennes, une série de trois à quatre moraines sont attribuées au Dryas récent (YD). Localement appelé "stade Egesen" (2), ces moraines sont localisées en moyenne 2000 m au dessus des formations similaires vosgiennes. Dans les Alpes, depuis M. Maisch (3) les reconstitutions de paléoclimatologie sont faites à partir de la position de la ligne d’équilibre des glaciers de 1850, ligne d’équilibre dite "de la fin du petit âge glaciaire". Pour les reconstitutions paléoclimatiques, les auteurs utilisent le concept "d’abaissement de la ligne d’équilibre" (ELA depression [US] ou Schneegrenzdepression [All]) par rapport à la situation de 1850.

1. "Petit âge glaciaire" et abaissement de la ligne d’équilibre

Une telle référence altitudinale ne semble pas exister dans les Vosges même si des glaciers temporaires (4) ont été décrits dans certains cirques vosgiens. Lorsqu’il utilise cette expression de "glacier temporaire", Collomb décrit très exactement comme nous le ferions aujourd’hui des accumulations neigeuses qui persistent au-delà de quelques années, comme cela a encore été le cas en 1978 (5) et finissent par disparaître. L’aspect "glacier" est justifié par la transformation de la neige de ces névés en glace. On peut donc penser que Collomb qui vivait durant le petit âge glaciaire a très bien vu des névés permanents dans les Hautes Vosges centrales, il faut rappeler qu’au même moment les glaciers alpins écrasaient des fermes et des granges dans ce qui est aujourd-

* Université Louis Pasteur, Faculté de géographie, 3, rue de l’Argonne 67083 Strasbourg Cedex, France
jlmt@equnow.u-strasbourg.fr

1 Glossaire :
ELA : "Equilibrium Line Altitude", altitude de la ligne d'équilibre.
LGM : Last Glacial Maximum. Dernier maximum glaciaire déterminé par les paléotempératures océaniques, ce maximum glaciaire ne correspond pas tout à fait au maximum obtenu dans les carottes glaciaires du Groenland.
LIA : "Little Ice Age", petit âge glaciaire.
MGE : Maximum Glacial Extent. Extension maximale des moraines continentales. Ce concept est différent du LGM, il correspond à la conception que l’on avait dans les années soixante de l’extension de la glaciation "frondelleenne".
YD : "Younger Dryas", Dryas récent.
d'hui la banlieue de Chamonix. Les glaciers alpins ayant toujours été plus volumineux et plus dynamiques que leurs équivalents vosgiens, ceux-ci ont pu être négligés par la mémoire collective.

1.1. Ligne d'équilibre : signification et obtention

Signification
La ligne d'équilibre est une ligne imaginaire (1) qui divise un glacier en deux zones aux dynamiques opposées : l'amont, ou zone d'accumulation et l'avalou zone d'ablation. C'est un terme physique, le bilan de masse qui différencie ces deux zones : la zone d'accumulation reçoit les précipitations neigeuses, les avalanches, la déflation éolienne ; inférieures aux gains, les pertes se font par déplacement en masse ou par sublimation. A l'aval, les précipitations sont faibles, les avalanches inexistantes ainsi que la déflation ; à l'opposé la fusion, le vêlage sont très importants. Sur la ligne d'équilibre, le bilan de masse est nul par définition. Ce lieu particulièrement simple est ainsi choisi pour établir le bilan d'énergie.

Le bilan d'énergie est un concept physique et climatique. Il représente l'utilisation en chaque point de la surface du globe de l'énergie disponible ou bilan radiatif. Le bilan radiatif est obtenu en faisant la somme des rayonnements en courte et grande longueur reçus et perdus par toute surface de l'écorce terrestre.

La connaissance sur la ligne d'équilibre du bilan d'énergie et du bilan de masse nous permet de relier la dynamique d'un névé, d'un glacier, ou d'un sol ... directement à celle du microclimat donc du climat. L'altitude de la ligne d'équilibre d'un paléoglacier est donc un indicateur du paléoclimat.

Détermination de la ligne d'équilibre (ELA)
La détermination de la ligne d'équilibre peut être faite de nombreuses manières différentes :
- La méthode orographique (Kurowski) consiste à dire que l'ELA est la moyenne arithmétique entre l'altitude du front et celle du plus haut sommet du glacier (de la rimaye), mais on obtiendrait de meilleurs résultats en prenant l'altitude maximale du bassin versant. Pour les Alpes, cette méthode donnerait des résultats satisfaisants. Pour la calottes de Barnes, qui s'étend de 1125 m à 460 m l'altitude moyenne est de 729 m et l'ELA de 880 m. Cette règle ne s'applique donc pas pour les glaciers qui vèlent des icebergs car l'océan n'est pas la limite inférieure que peut atteindre le glacier.
- La méthode hypsométrique (Penck et Brückner) repose sur le rapport des aires (projetées) des zones d'ablation et d'accumulation. Le rapport fixé par Penck et Brückner (1) est de :

Aire accumulation /aire totale = 3/4

5 NB : Observation de terrain de M. Alain Unteréiner.
6 NB : Pour un méridien donné, l'altitude de la ligne d'équilibre varie, elle augmente du pôle à l'équateur pour diminuer avec les hautes latitudes de l'hémisphère sud. En Eurasie, elle augmente vers l'Est, avec la continentalité. Au centre du Spitzberg le Nordenskjoeld ELA = 640 m et 690 m au glacier Negri. Au Spitzberg Sud, le Hornaund ELA = 350 m. Spitzberg Nord, Kongsfjorden ELA = 350 m. En Nouvelle Zemble, ELA = 680 m. Islande, au sud ELA = 1050 m ; au nord ELA = 1650 m cette différence est due à la faiblesse des précipitations. Alpes occidentales ELA = 2800 - 2900 m. Dans le Caucausé (45° N) la ligne d'équilibre se situe de 2700 à 2900 m. Au Mont Ararat (40° N, 5165 m) ELA = 4000-4200 m.
On l'obtient à partir du premier quartile de la courbe hypsométrique cumulée. Cette méthode a servi à ces auteurs pour déterminer la position de l'ELA des glaciers du quaternaire. Elle a été établie pour les glaciers alpins qui ont un bilan équilibré (assertion vraie pour la Mer de Glace au XIXe siècle, aujourd'hui cette hauteur est de 100 à 200 m plus haut), cette règle n'est valable que pour les années ou le bilan est équilibré. Actuellement pour le glacier d'Aletsch la zone d'ablation couvre 35,4% de la surface totale et non 25%. Cette méthode a les mêmes défauts que la précédente pour les glaciers qui vêlent. Pour les glaciers quaternaires, il n'est pas certain que cette méthode ait été meilleure, en effet, pour le Malaspina (Alaska méridional) la zone d'ablation est beaucoup plus étendue que la zone d'accumulation ; or les glaciers de piémont du quaternaire devaient plus ressembler à ce genre de glaciers qu'à des glaciers de vallée.

- La méthode morphologique (Hess) repose sur la forme des courbes de niveau sur le glacier. La vitesse étant plus grande au centre que sur les bords, le centre de la zone d'accumulation doit être déprimé et le centre de la zone d'ablation doit être bombé. La ligne d'équilibre se trouve à l'endroit où les courbes de niveau partent perpendiculairement aux rives.

- La méthode des moraines latérales (Reid). Les débris tombés sur le glacier s'enfoncent dans la zone d'accumulation et réapparaissent dans la zone d'ablation. La zone d'équilibre se trouve donc entre la zone de disparition des débris et la zone d'émergence. L'observation sur photos des moraines latérales permet de déterminer la position de la ligne d'équilibre. Cette méthode peut être utilisée sur le terrain associée à la méthode des aires pour déterminer l'ELA des paléoglacières.

- La méthode des bilans spécifiques. Il s'agit de porter les bilans spécifiques en fonction de l'altitude et de calculer la régression. Pour le glacier de St Serlin, l'ablation nulle est obtenue avec un probabilité de 95 % entre 2857 et 2933 m. Parce qu'elle est le lieu où le bilan de masse glaciaire et le bilan d'énergie sont nuls, l'obtention de la l'altitude de la ligne d'équilibre (ELA) est un élément essentiel de la connaissance climatologique régionale.

1.2. **Le cadre méthodologique alpin**

Bien évidemment des différences régionales existent entre le Nord et le Sud des Alpes, et l'Est est plus continental que l'Ouest. Tous les auteurs ne donnent pas les mêmes valeurs pour l'abaissement de la ligne d'équilibre, ni tous les auteurs ne donnent les mêmes noms aux différents stades, ni les mêmes noms aux mêmes moraines. Ceci se complique par une opposition entre les chercheurs qui travaillent à l'intérieur des Alpes et ceux qui travaillent sur le piémont.

Les stades suivants ont été identifiés par M. Maitsch.

<table>
<thead>
<tr>
<th></th>
<th>Gschnitz</th>
<th>Val Tisch</th>
<th>Clavadel</th>
<th>Daun</th>
<th>Egesen I</th>
<th>Bockental II</th>
<th>Egesen II</th>
<th>Kroamer Egesen III</th>
</tr>
</thead>
<tbody>
<tr>
<td>âge estimé</td>
<td>14.5</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>âge (ka BP)</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td>11.8 ± 5</td>
<td>10.4 ± 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 1. : La baisse de ELA (âge) est tirée de Maisch 1981, les âges estimés sont empiriques et tirés du même auteur. Les datations absolues sont tirées de Ivy Ochs et al. (1996) et d'une communication orale de H. Kerschner.
La simple lecture de ce tableau montre que dans les Alpes, les moraines "Egesen" se trouvent de 100 à 250 m plus bas que les moraines de 1850 et Gschnitz est à 600 m plus bas. À titre de comparaison, la plus haute moraine de la Wormsa se trouve aux environs de 600 m d'altitude et la moraine de Metzeral à 475 m. Pour globalement les mêmes périodes de temps, la remontée de la ligne d'équilibre est de 500 m dans les Alpes et de 150 m dans les Vosges (7). Bien évidemment le type de raisonnement alpin ne s'applique absolument pas dans les Vosges car nous ignorons encore l'existence et l'étendue des moraines du petit âge glaciaire ...

1.3. Le petit âge glaciaire dans les Vosges

Cependant la recherche obstinée de ces traces de moraines a permis à M. Alain Untereinser de mettre la main sur un ouvrage de botanique (8) contenant une phrase stupéfiante :

"Felix minor palustris ... Nicht weit von dem Closter Peris vereiniget sich ein anderer Bach mit diesem und wird Weisbach genannt / weil en er gantz milchrecht aussiebet / wegen des allgemein zerschmelzenden Eises oder gletschers aus der Weisen See"

Stupéfiant mais non inavraisemblable, en effet il faut se souvenir que les anciens auteurs interprêtaient très correctement les eaux blanchies par les limons glaciaires [Daubrée (9) a décrit les crues glaciaires laiteuses du Rhin à Strasbourg au début de l'été]. Il n'est donc pas extraordinaire de penser que des névés (probablement pas des glaciers) existaient dans le cirque du Lac Blanc au cours du petit âge glaciaire et probablement ailleurs aussi.

1.4. Une moraine du petit âge glaciaire au Frankenthal - Rothried ?

Le Frankenthal est un cirque complexe encombré de nombreuses moraines. Trois moraines pourraient être des candidats plausibles pour le petit âge glaciaire : (i) la moraine de la grotte Dagobert, (ii) un alignement énigmatique, (iii) la cuvette de Schaeferthal - Rothried.

(i) La grotte Dagobert est une niche de nivation creusée sur le flanc sud du Frankenthal, cette niche est cernée par une moraine de petite taille (1.5 m de haut et d'une vingtaine de m de long). Cette moraine de névé est orientée au nord-est, localisée en altitude, elle est soit la plus récente des moraines de la récession post glaciaire soit la trace d'une moraine encore plus récente donc du petit âge glaciaire.

(ii) "L'alignement énigmatique" est une accumulation de blocs sans matrice fine, ces blocs reposent sur une moraine ancienne mais la recoupent, ils semblent être les témoins fugitifs d'un névé qui se trouvait au pied de la grotte Dagobert.

L'omblic de Rothried

(iii) Le couloir-cirque de Schaeferthal débouche sur l'omblic de Rothried, il y forme un petit amphithéâtre morainique percé latéralement par un chenal de vidange dont le cône recouvre la tourbière de Rothried.

8 NB : L'altitude des moraines terminales n'a rien à voir avec l'altitude de la ligne d'équilibre, les variations de ces différentes altitudes n'ont donc pas à être mélangées. Néanmoins, lorsqu'ils n'ont pas d'autres données à manipuler - les spécialistes utilisent quatre concepts différents : altitude des névés, altitude de la base des cirques, altitude de la ligne d'équilibre et altitude des moraines terminales.

9 M. Mappi, Historia Planitarum Alsaticarum, J. D. Dulsecki, Amsterdam, (1742).
D'autres moraines très récentes existent dans quasiment toutes les hautes vallées vosgiennes (Baerenbach et Frankenthal Nord ont chacun deux niveaux de moraines), lorsqu'elles sont seules et sans continuité avec d'autres formations glaciaires antérieures, il est quasiment impossible de les dater.

2. La déglaciation dans les Hautes Vosges alsaciennes

2.1. Altenbach et le Bölling Alleröd

Un bloc erratique de 28 m³ situé sur le versant droit de l'Altenbach à 850 m d'altitude a été daté par le 10Be. Ce bloc fait partie d'une moraine d'ablation abandonnée lors du retrait du glacier de l'Altenbach. La durée d'exposition mesurée est de 15328 ans, cette date correspond à une période d'adoucissement du climat mise en évidence aussi bien dans les glaces du Groenland que dans les lacs de Bavière.

2.2. Missheimle et le Dryas récent

Le cirque glaciaire de Missheimle est fermé par une ride morainique complexe formée d'au moins deux cordons installés sur la lèvre externe d'un verrou. La datation absolue par le 10Be de quatre blocs de granite a donné les âges suivant :

<table>
<thead>
<tr>
<th>Miss 5a</th>
<th>Miss 5b</th>
<th>Miss 5c</th>
<th>Miss 5d</th>
</tr>
</thead>
<tbody>
<tr>
<td>11460</td>
<td>11472</td>
<td>10629</td>
<td>10627</td>
</tr>
</tbody>
</table>

Tableau 2 : Datation absolue de blocs morainiques métriques pris dans les moraines de Missheimle.

Ces âges correspondent avec les âges Dryas récent publiés dans la littérature :
(i) Le comptage des couches de neige (2) dans le sondage de Dye 3 a donné 10720 ± 150 pour la fin du Dryas récent ; dans le sondage de GRIP au Groenland, Johnsen (3) a proposé les dates 12700 ± 100 à 11550 ± 70 ; dans le sondage voisin de GISG 2 (4) les dates proposées sont 12.9 ka et 11.7 ka. Dans la même carotte, Alley (5) propose 11640 ± 250 pour la fin du Dryas récent après une durée de 1300 ± 70.

(ii) Le comptage des varves dans les sédiments des lacs suisses (6) a donné les résultats suivants : de 12125 à 11000.

(iii) J. C. Gosse (7) en voulant montrer l'extension aux USA du Dryas récent et en utilisant la datation de moraines par le 10Be a obtenu les âges : 11000 ± 700. Récemment, en utilisant les taux de production de 10Be, 26Al and 36Cl sur des blocs morainiques de "Julia pass" (8) les âges obtenus vont de 11800 ± 500 à 10400 ± 400 ans.

On peut donc considérer que les deux moraines de Missheimle datent bien deux épisodes du Dryas récent.

(6) I. Hajdas et al., Climate Dynamics, 9 (1993).
2.3. Le Frankenthal et le Dryas récent

Contrairement au cirque de Missheimle, nous n'avons pas encore de datations absolues de moraines au Frankenthal. Donc nous ne savons pas où se trouvent les accumulations du Dryas récent et à fortiori où sont les moraines holocènes. Mais nous savons que le Frankenthal avec ses tourbières et sa collection de moraines est un site qui n'a pas encore dit son dernier mot !

2.4. Le Dryas récent dans la Fecht

La datation des 3 moraines de la Wormsa a montré que celles-ci étaient toutes postérieures au YD. Il faut donc aller au débouché de la Wormsa dans la vallée de la Fecht pour trouver les accumulations morainiques du Dryas récent. De la même manière, les rides morainiques situées sous le village de Erbersch (Mittlach) dateraient elles aussi du Dryas récent.

2.5. Ligne d'équilibre à Missheimle - Altenbach

Les altitudes des lignes d'équilibre obtenues pour Missheimle sont de 1125 m et 1135 m pour les deux moraines du YD et de 920 m pour le glacier général de l'Altenbach. Ces valeurs - élevées pour la région - mais faibles pour les Alpes ! ne le sont que parce que l'Altenbach est une vallée suspendue au dessus de la vallée principale de Stossiwir - Ampfersbach. On peut donc penser que la vallée de l'Altenbach alimentée par quatre cirques (Nisslesmatt, Côte 1000, Baerenbach, Missheimle) est une vallée totalement glaciaire née à partir d'une niche de nivation haut placée sur le versant Nord de la vallée d'Ampfersbach.

2.6. Les dernières glaces

Mercier et al. (1) ont montré que dans les cirques et vallées glaciaires de la zone du Hohneck, les glaces avaient abandonné les dernières roches moutonnées de la Wormsa à 6.3 10Be ka (19) et celles du Lac Noir à 5.1 10Be ka. La dernière poussée froide de la déglaciation a laissé une moraine de poussée dans la Wormsa à 7.8 ka. On peut donc dire que les dernières glaces n'ont quitté le versant alsacien et la crête des Vosges que depuis 5 à 6 millénaires.

Ces âges que l'on peut considérer comme récents, ne le sont en fait que parce que nous ignorons tout de la dynamique climatique à la fin du pléistocène et au début de l'Holocène. Les travaux palynologiques [parfois anciens (20)] avaient néanmoins tous déjà indiqué des âges semblables ! En effet la base des tourbières du Lac Noir, Gazon de Faing, Stiffelnbach, Tanet, Hirschsteinrried et Rothried ont toutes un âge Subboréal soit dans la chronologie moderne calibrée du 14C de 4600 à 5600 ans (21).

Ce retard dans le transfert des connaissances entre palynologie et géomorphologie - paléocologie est une preuve de plus du cloisonnement des disciplines universitaires.

19 NB : L'écriture : 10Be ka, fait référence au calendrier absolu construit sur l'isotope cosmogénique Bérylium 10. Dans l'état actuel de nos connaissances et pour la durée considérée, ce calendrier n'a pas à être corrigé comme cela a été fait pour les datations obtenues avec le 14C. Pour l'instant il y a équivalence entre les datations exprimées en : ka BP, en ka 10Be et 14C cal.
2.7. Bilan d'énergie, bilan de masse, ELA et formes géomorphologiques

Nous venons de le voir, la permanence d'un type de bilan d'énergie en un point va entraîner l'établissement et la permanence d'un névé ou d'un glacier puis la formation d'une forme géomorphologique.

Au cours de la déglaciation, les formes géomorphologiques les plus récentes vont être localisées dans les parties hautes des vallées et des versants. Au contraire à l'arrivée d'une nouvelle période froide les formes résiduelles localisées en altitude vont descendre en altitude.

C'est ce système d'ascenseur qui va sculpter les versants et les vallées ; il s'est produit une vingtaine de fois au cours du quaternaire ce qui explique la difficulté qu'il y a à attribuer facilement un âge à une forme de relief.

2.8. Glace et géométrie des vallées glaciaires

Le Modèle de Oerlemans (21) et ses conséquences géométriques

Si l'on considère un glacier schématique de largeur constante, de pente faible et constante, la position de la langue glaciaire est fonction de la variation d'altitude de la ligne d'équilibre. Pour une section de glacier, la variation de cette section au cours du temps est fonction de deux termes : le bilan de masse et la divergence des vitesses en chaque point.

Si l'on pose - comme cela est vérifié dans la plupart des glaciers (Paterson 1983) - que la contrainte à la base du glacier est constante, il s'ensuit que la longueur d'un glacier à l'équilibre est proportionnelle à l'encaissement de la vallée on s'aperçoit que la variation de longueur en fonction de la variation de l'altitude de la ligne d'équilibre est inversement proportionnelle à une constante : la pente du lit du glacier.

Le modèle proposé par Oerlemans est assez simple pour pouvoir être facilement utilisé, pour l'instant la modélisation des glaciers de vallée de la région du Hohneck (22) montre que pour une ELA inférieure à 1000 m la crête des Vosges était englacée. Nous comptons bien dans un proche avenir arriver à modéliser simultanément plusieurs vallées, c'est la seule possibilité rapide et économique pour obtenir un âge aux différentes moraines des vallées alsaciennes.

3. Climat des Vosges et climat des Alpes à la fin de la dernière période froide

La Réserve Naturelle de Frankenthal - Missheimle est assimilable climatiquement à une partie la grande crête, celle-ci appartient à l'été subalpin (moyenne de janvier -4°, de juillet 11°), elle correspond à deux composantes, l'une autochtone (latitude, altitude) l'autre allochtone avec des masses d'air océanique (ventilation, précipitation, nébulosité). La crête formant la première barrière orographique au dessus du Bassin Parisien, la composante océanique - subarctique l'emporte sur la composante alpine. On note une parenté remarquable du climat de la crête avec le climat du sud-ouest de l'Islande.

Les systèmes anémo-orographiques

R. Carbiener (23) a bien décrit les systèmes "anémo-orographiques" formés sur le versant lorrain par des vallées orientées Ouest-Est canalisant les vents dominants et les

accélérant par resserrement à proximité de la crête. Puis une zone de dépression à l’arrière de la crête, crée une succeion se traduisant par des tourbillons violents et une ventilation à contre-courant des crêtes. Ce schéma est illustré par la Vologne et les affluents de la Moselotte à l’Ouest et les cirques du Hohneck à l’Est. Ce schéma, valable pour toutes les Vosges a parfaitement fonctionné lors de la tempête du 26-12-1999, en particulier dans les vallées de la Haute Bruche, de la Sarre Blanche et de la Sarre Rouge où les chablis ont été considérables.

L’effet de crête

La crête, normale à la trajectoire des principales masses d’air, accélère les flux qui tendent à contourner les convexités sommitales et se concentrent au niveau des cols. Ce double effet de la ventilation ne dépend que de la géométrie du relief, dans le passé il était exactement le même chaque fois que la circulation d’Ouest prédominait ; il a donc fortement contribué à la suralimentation neigeuse des cirques.

3.1. Alpes et Vosges

Nous avons vu précédemment que la dynamique des glaciers était environ trois fois plus grande dans les Vosges que dans les Alpes, il y a là matière à réflexion.

Au cours de la dernière période froide, le front polaire océanique oscillait autour de 45°N (38) et durant le développement des calottes glaciaires, le maximum des précipitations s’était déplacé vers le Sud (39). A la latitude des Vosges, le climat était plus sec lors des périodes froides (moins d’eau en circulation lors des bas niveaux marins et températures plus basses), mais durant le Dryas récent et au début de l’Holocène les niveaux marins sont en pleine remontée, les interactions entre le front polaire qui remontait en latitude et les eaux de l’Atlantique ont pu produire à certains moments de l’Holocène une circulation d’Ouest et des dépressions plus nombreuses qu’aujourd’hui (39).

Parce qu’elles étaient plus continentales et plus méridionales (37), les Alpes étaient plus sèches que les Vosges. Conséquence de leur taille, leurs glaciers étaient moins sensibles (37) aux fluctuations climatiques que les petits glaciers de vallées (39). En travaillant sur la réponse des glaciers aux changements environnementaux, J. Oerlemans (37) a démontré que la variation de longueur des glaciers de vallée est inversement proportionnelle à la pente du lit.

Ces observations expliquent bien les différences observées entre les Alpes et les Vosges sur l’altitude des moraines au Dryas récent et au début de l’Holocène.

3.2. Les paléoclimats européens et la spécificité alsacienne

Les paléo climats européens sont caractérisés par la conjonction de deux éléments : la latitude et la circulation océanique. Contrairement à ce qu’affirmaient les anciens

manuels de géographie, les latitudes moyennes ne sont pas des lieux favorisés mais sont des latitudes froides ; la norme thermique est donnée par les milieux équivalents en Amérique du Nord.

Les conditions actuelles "douces" le sont sous l’effet de la circulation océanique, celle-ci fournissant à la fois chaleur et humidité au continent européen.

A ces deux critères s'ajoutent la position particulière de la barrière vosgienne grossièrement orthogonale à la circulation atmosphérique d'Ouest et créant l’effet anémo-oro-graphique.

3.3. Vosges et Vosges

Si une différence de précipitations existe bien entre les Alpes et les Vosges, il est encore difficile d'expliquer les différences de géométrie existant entre les moraines du même âge pour deux vallées vosgiennes. C'est le cas pour les moraines de Husseren- Wesserlin et les moraines de Kirchberg qui sont toutes deux d'énormes accumulations de matériaux, alors que la moraine de la zone industrielle de Munster est imperceptible alors qu'elle est probablement du même âge. En effet la reconstitution des moraines de la vallée de la Wormsa nous permet de donner un âge de 14.5 ka à la moraine de Metzeral ce qui en ferait du Dryas ancien et l'équivalent alpin de Clavadel ou de Val Tisch alors que J. Tricart (*) et C. Krüttlé (**) en ont fait la moraine würmienne terminale. Mais alors où se trouve l'équivalent alsacien de Gschnitz (**)? Morphologiquement la moraine du site éponyme de Gschnitz ressemble à celle de Husseren - Wesserlin (en moins important) est ce dû à la continuité des alpes autrichiennes ? Avons nous à résoudre un problème de climatologie ? ou un problème de chronologie ?

Il y a là matière à recherches, A moins que les moraines de Husseren - Wesserlin et Kirchberg ne soient des moraines du Dryas (ancien ou récent) mais alors où sont les moraines du dernier pléistocène LGM et MGE (†) des vallées de la Fecht, de la Doller et de la Thur ?

CONCLUSION

Longtemps, les scientifiques ont été condamnés à utiliser des chronologies relatives dans les sciences de la terre, la mise au point d'outils de datation absolue permettant de dater aussi bien les formes d'accumulation (en relief) que les formes d'érosion (en creux) bouleverse nos connaissances. Les formes de relief sont rajeunies, les oscillations climatiques sont datées et leur nombre augmente tous les jours. La conjonction de trois éléments : latitude, circulation océanique et la position particulière de la barrière vosgienne ont entraîné lors de la déglaciation la création d'un très grand nombre de moraines récentes. Les langues glaciaires ont quitté les vallées vosgiennes durant l'Holocène (7-8 ka BP), la glace a quitté la crête et les fonds de cirques encore plus récemment (5-6 ka). Les inconnues sont encore très nombreuses, le pléistocène würmien" reste encore à identifier ("il y a trop de moraines pour une si petite montagne") il en est de même des cycles glaciaires précédents.

(†) NB : La moraine de Gschnitz a été décrite pour la première fois par A. Peuck et E. Bruckner en (1909), cette moraine se trouve à l'intérieur des Alpes autrichiennes et est une étape importante de la chronologie de la déglaciation. Morphologiquement c'est un vallum d'une dizaine de mètres de haut qui barre complètement sa vallée. L'absence d'inclusion par les eaux de fonte, l'absence de cônes prodigieux à l'avant, la faciès de la forme feraient penser à une moraine mise en place dans un milieu sec avec une part importante de sublimation et une faible fusion journalière de la glace. C'est tout le contraire de ce que l'on observe à Metzeral et à Munster, mais cela pourrait correspondre aux moraines de Kirchberg et Husseren - Wesserlin qui semblent cependant mises en place dans un milieu plus humide.